developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-08-3_v1
model_name: 2025-07-08_3
model_group: AlbertWang8192/2025-07-0
status: torndown
timestamp: 2025-07-08T12:44:05+00:00
num_battles: 5996
num_wins: 2694
celo_rating: 1252.32
family_friendly_score: 0.5594
family_friendly_standard_error: 0.007020991952708677
submission_type: basic
model_repo: AlbertWang8192/2025-07-08_3
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.5989492716476139, 'latency_mean': 1.6694192683696747, 'latency_p50': 1.6542826890945435, 'latency_p90': 1.8616236686706542}, {'batch_size': 3, 'throughput': 1.0701684339995143, 'latency_mean': 2.797991443872452, 'latency_p50': 2.8094342947006226, 'latency_p90': 3.0984392166137695}, {'batch_size': 5, 'throughput': 1.2910233549281867, 'latency_mean': 3.8627644097805023, 'latency_p50': 3.8631428480148315, 'latency_p90': 4.318506979942322}, {'batch_size': 6, 'throughput': 1.3502892126600945, 'latency_mean': 4.4231032705307, 'latency_p50': 4.435524344444275, 'latency_p90': 4.918998765945434}, {'batch_size': 8, 'throughput': 1.4163690475486959, 'latency_mean': 5.601783673763276, 'latency_p50': 5.661816477775574, 'latency_p90': 6.26297869682312}, {'batch_size': 10, 'throughput': 1.4397074781361905, 'latency_mean': 6.887735074758529, 'latency_p50': 6.847870588302612, 'latency_p90': 7.734981894493103}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-08_3
is_internal_developer: False
language_model: AlbertWang8192/2025-07-08_3
model_size: 13B
ranking_group: single
throughput_3p7s: 1.27
us_pacific_date: 2025-07-08
win_ratio: 0.4492995330220147
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 60, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['<|im_end|>', '\n', '<|im_start|>'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-08-3-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-08-3-v1-mkmlizer to finish
albertwang8192-2025-07-08-3-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ║ ║
albertwang8192-2025-07-08-3-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-08-3-v1-mkmlizer: Downloaded to shared memory in 42.485s
albertwang8192-2025-07-08-3-v1-mkmlizer: Checking if AlbertWang8192/2025-07-08_3 already exists in ChaiML
albertwang8192-2025-07-08-3-v1-mkmlizer: Creating repo ChaiML/2025-07-08_3 and uploading /tmp/tmp7qwo4bo7 to it
albertwang8192-2025-07-08-3-v1-mkmlizer: 0%| | 0/6 [00:00<?, ?it/s] 17%|█▋ | 1/6 [00:04<00:20, 4.13s/it] 33%|███▎ | 2/6 [00:08<00:16, 4.16s/it] 50%|█████ | 3/6 [00:12<00:11, 3.99s/it] 67%|██████▋ | 4/6 [00:20<00:11, 5.66s/it] 83%|████████▎ | 5/6 [00:27<00:06, 6.11s/it] 100%|██████████| 6/6 [00:28<00:00, 4.50s/it] 100%|██████████| 6/6 [00:28<00:00, 4.77s/it]
albertwang8192-2025-07-08-3-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmp7qwo4bo7, device:0
albertwang8192-2025-07-08-3-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-08-3-v1-mkmlizer: quantized model in 30.625s
albertwang8192-2025-07-08-3-v1-mkmlizer: Processed model AlbertWang8192/2025-07-08_3 in 127.288s
albertwang8192-2025-07-08-3-v1-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-08-3-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-08-3-v1/nvidia/config.json
albertwang8192-2025-07-08-3-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-08-3-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-08-3-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-08-3-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-08-3-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-08-3-v1/nvidia/tokenizer.json
albertwang8192-2025-07-08-3-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-08-3-v1/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-08-3-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:11, 31.25it/s] Loading 0: 4%|▎ | 13/363 [00:00<00:07, 49.58it/s] Loading 0: 5%|▌ | 19/363 [00:00<00:08, 42.40it/s] Loading 0: 7%|▋ | 24/363 [00:00<00:08, 40.37it/s] Loading 0: 9%|▊ | 31/363 [00:00<00:07, 46.53it/s] Loading 0: 10%|▉ | 36/363 [00:00<00:06, 47.48it/s] Loading 0: 11%|█▏ | 41/363 [00:00<00:08, 38.75it/s] Loading 0: 13%|█▎ | 49/363 [00:01<00:06, 47.45it/s] Loading 0: 15%|█▌ | 55/363 [00:01<00:06, 44.59it/s] Loading 0: 17%|█▋ | 60/363 [00:01<00:06, 44.94it/s] Loading 0: 18%|█▊ | 65/363 [00:01<00:10, 28.72it/s] Loading 0: 20%|█▉ | 71/363 [00:01<00:08, 34.07it/s] Loading 0: 21%|██ | 76/363 [00:01<00:08, 35.22it/s] Loading 0: 22%|██▏ | 81/363 [00:02<00:07, 37.49it/s] Loading 0: 24%|██▎ | 86/363 [00:02<00:07, 38.95it/s] Loading 0: 25%|██▌ | 91/363 [00:02<00:08, 32.39it/s] Loading 0: 27%|██▋ | 98/363 [00:02<00:06, 39.44it/s] Loading 0: 28%|██▊ | 103/363 [00:02<00:06, 38.97it/s] Loading 0: 30%|██▉ | 108/363 [00:02<00:06, 41.51it/s] Loading 0: 31%|███ | 113/363 [00:02<00:07, 35.44it/s] Loading 0: 33%|███▎ | 118/363 [00:03<00:06, 35.06it/s] Loading 0: 34%|███▍ | 125/363 [00:03<00:05, 41.79it/s] Loading 0: 36%|███▌ | 130/363 [00:03<00:05, 40.86it/s] Loading 0: 37%|███▋ | 135/363 [00:03<00:05, 39.82it/s] Loading 0: 39%|███▊ | 140/363 [00:03<00:05, 40.50it/s] Loading 0: 40%|███▉ | 145/363 [00:03<00:08, 25.88it/s] Loading 0: 41%|████ | 149/363 [00:04<00:08, 26.63it/s] Loading 0: 43%|████▎ | 156/363 [00:04<00:06, 33.94it/s] Loading 0: 44%|████▍ | 161/363 [00:04<00:05, 36.40it/s] Loading 0: 46%|████▌ | 166/363 [00:04<00:05, 37.84it/s] Loading 0: 47%|████▋ | 172/363 [00:04<00:04, 38.37it/s] Loading 0: 49%|████▉ | 177/363 [00:04<00:04, 38.78it/s] Loading 0: 50%|█████ | 183/363 [00:04<00:04, 43.06it/s] Loading 0: 52%|█████▏ | 188/363 [00:04<00:04, 42.94it/s] Loading 0: 53%|█████▎ | 193/363 [00:05<00:03, 42.81it/s] Loading 0: 55%|█████▍ | 198/363 [00:05<00:03, 43.75it/s] Loading 0: 56%|█████▌ | 203/363 [00:05<00:04, 37.11it/s] Loading 0: 58%|█████▊ | 210/363 [00:05<00:03, 44.84it/s] Loading 0: 59%|█████▉ | 215/363 [00:05<00:03, 44.78it/s] Loading 0: 61%|██████ | 221/363 [00:05<00:02, 48.46it/s] Loading 0: 63%|██████▎ | 227/363 [00:05<00:04, 30.95it/s] Loading 0: 64%|██████▍ | 232/363 [00:06<00:04, 32.32it/s] Loading 0: 66%|██████▌ | 238/363 [00:06<00:03, 36.46it/s] Loading 0: 67%|██████▋ | 244/363 [00:06<00:03, 37.42it/s] Loading 0: 69%|██████▊ | 249/363 [00:06<00:03, 36.06it/s] Loading 0: 70%|███████ | 255/363 [00:06<00:02, 39.38it/s] Loading 0: 72%|███████▏ | 260/363 [00:06<00:02, 39.48it/s] Loading 0: 73%|███████▎ | 265/363 [00:06<00:02, 39.86it/s] Loading 0: 74%|███████▍ | 270/363 [00:07<00:02, 41.05it/s] Loading 0: 76%|███████▌ | 275/363 [00:07<00:02, 33.75it/s] Loading 0: 77%|███████▋ | 280/363 [00:07<00:02, 36.99it/s] Loading 0: 79%|███████▊ | 285/363 [00:07<00:02, 36.33it/s] Loading 0: 80%|████████ | 291/363 [00:07<00:01, 40.24it/s] Loading 0: 82%|████████▏ | 296/363 [00:07<00:01, 40.09it/s] Loading 0: 83%|████████▎ | 301/363 [00:07<00:01, 41.61it/s] Loading 0: 84%|████████▍ | 306/363 [00:08<00:02, 22.14it/s] Loading 0: 85%|████████▌ | 310/363 [00:08<00:02, 23.46it/s] Loading 0: 87%|████████▋ | 314/363 [00:08<00:01, 25.71it/s] Loading 0: 88%|████████▊ | 320/363 [00:08<00:01, 31.31it/s] Loading 0: 90%|████████▉ | 325/363 [00:08<00:01, 35.00it/s] Loading 0: 91%|█████████ | 330/363 [00:08<00:01, 31.20it/s] Loading 0: 93%|█████████▎| 337/363 [00:09<00:00, 39.18it/s] Loading 0: 94%|█████████▍| 342/363 [00:09<00:00, 38.94it/s] Loading 0: 96%|█████████▌| 347/363 [00:09<00:00, 39.51it/s] Loading 0: 97%|█████████▋| 352/363 [00:09<00:00, 41.65it/s] Loading 0: 98%|█████████▊| 357/363 [00:09<00:00, 33.99it/s]
Job albertwang8192-2025-07-08-3-v1-mkmlizer completed after 156.88s with status: succeeded
Stopping job with name albertwang8192-2025-07-08-3-v1-mkmlizer
Pipeline stage MKMLizer completed in 157.44s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.31s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-08-3-v1
Waiting for inference service albertwang8192-2025-07-08-3-v1 to be ready
Inference service albertwang8192-2025-07-08-3-v1 ready after 190.98140740394592s
Pipeline stage MKMLDeployer completed in 191.80s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.3472883701324463s
Received healthy response to inference request in 1.6404023170471191s
Received healthy response to inference request in 1.8860673904418945s
Received healthy response to inference request in 1.8378236293792725s
Received healthy response to inference request in 1.7564208507537842s
5 requests
0 failed requests
5th percentile: 1.6636060237884522
10th percentile: 1.6868097305297851
20th percentile: 1.733217144012451
30th percentile: 1.7727014064788817
40th percentile: 1.805262517929077
50th percentile: 1.8378236293792725
60th percentile: 1.8571211338043212
70th percentile: 1.8764186382293702
80th percentile: 1.978311586380005
90th percentile: 2.1627999782562255
95th percentile: 2.2550441741943357
99th percentile: 2.328839530944824
mean time: 1.8936005115509034
Pipeline stage StressChecker completed in 12.07s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.74s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.72s
Shutdown handler de-registered
albertwang8192-2025-07-08-3_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3115.83s
Shutdown handler de-registered
albertwang8192-2025-07-08-3_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-08-3_v1 status is now torndown due to DeploymentManager action