developer_uid: RandomForest1024
submission_id: albertwang8192-2025-07-05-2_v1
model_name: 2025-07-05_2
model_group: AlbertWang8192/2025-07-0
status: torndown
timestamp: 2025-07-05T18:24:55+00:00
num_battles: 8096
num_wins: 3663
celo_rating: 1253.9
family_friendly_score: 0.5798
family_friendly_standard_error: 0.006980429213164474
submission_type: basic
model_repo: AlbertWang8192/2025-07-05_2
model_architecture: MistralForCausalLM
model_num_parameters: 12772070400.0
best_of: 8
max_input_tokens: 1024
max_output_tokens: 64
reward_model: default
latencies: [{'batch_size': 1, 'throughput': 0.6000359477598384, 'latency_mean': 1.6664451253414154, 'latency_p50': 1.6563944816589355, 'latency_p90': 1.8392526388168335}, {'batch_size': 3, 'throughput': 1.072665842333015, 'latency_mean': 2.7920145654678343, 'latency_p50': 2.794243812561035, 'latency_p90': 3.056756782531738}, {'batch_size': 5, 'throughput': 1.2861694902590248, 'latency_mean': 3.860282908678055, 'latency_p50': 3.8750261068344116, 'latency_p90': 4.353995370864868}, {'batch_size': 6, 'throughput': 1.3358208714934445, 'latency_mean': 4.465377678871155, 'latency_p50': 4.4910136461257935, 'latency_p90': 4.9468141317367555}, {'batch_size': 8, 'throughput': 1.4160613957828, 'latency_mean': 5.608506643772126, 'latency_p50': 5.641687035560608, 'latency_p90': 6.279389357566833}, {'batch_size': 10, 'throughput': 1.4464021916074223, 'latency_mean': 6.858134603500366, 'latency_p50': 6.919280052185059, 'latency_p90': 7.69795925617218}]
gpu_counts: {'NVIDIA RTX A5000': 1}
display_name: 2025-07-05_2
is_internal_developer: False
language_model: AlbertWang8192/2025-07-05_2
model_size: 13B
ranking_group: single
throughput_3p7s: 1.27
us_pacific_date: 2025-07-05
win_ratio: 0.452445652173913
generation_params: {'temperature': 0.6, 'top_p': 0.95, 'min_p': 0.025, 'top_k': 60, 'presence_penalty': 0.4, 'frequency_penalty': 0.4, 'stopping_words': ['<|im_end|>', '<|im_start|>', '\n'], 'max_input_tokens': 1024, 'best_of': 8, 'max_output_tokens': 64}
formatter: {'memory_template': "{bot_name}'s Persona: {memory}\n####\n", 'prompt_template': '{prompt}\n<START>\n', 'bot_template': '{bot_name}: {message}\n', 'user_template': '{user_name}: {message}\n', 'response_template': '{bot_name}:', 'truncate_by_message': False}
Resubmit model
Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name albertwang8192-2025-07-05-2-v1-mkmlizer
Waiting for job on albertwang8192-2025-07-05-2-v1-mkmlizer to finish
albertwang8192-2025-07-05-2-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ██████ ██████ █████ ████ ████ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ░░██████ ██████ ░░███ ███░ ░░███ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ░███░█████░███ ░███ ███ ░███ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ░███░░███ ░███ ░███████ ░███ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ░███ ░░░ ░███ ░███░░███ ░███ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ░███ ░███ ░███ ░░███ ░███ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ █████ █████ █████ ░░████ █████ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ░░░░░ ░░░░░ ░░░░░ ░░░░ ░░░░░ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ Version: 0.29.15 ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ Features: FLYWHEEL, CUDA ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ Copyright 2023-2025 MK ONE TECHNOLOGIES Inc. ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ https://mk1.ai ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ The license key for the current software has been verified as ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ belonging to: ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ Chai Research Corp. ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ Expiration: 2028-03-31 23:59:59 ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ║ ║
albertwang8192-2025-07-05-2-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
albertwang8192-2025-07-05-2-v1-mkmlizer: Downloaded to shared memory in 82.029s
albertwang8192-2025-07-05-2-v1-mkmlizer: Checking if AlbertWang8192/2025-07-05_2 already exists in ChaiML
albertwang8192-2025-07-05-2-v1-mkmlizer: Creating repo ChaiML/2025-07-05_2 and uploading /tmp/tmpwiqj3ckl to it
albertwang8192-2025-07-05-2-v1-mkmlizer: 0%| | 0/11 [00:00<?, ?it/s] 9%|▉ | 1/11 [00:03<00:39, 3.96s/it] 18%|█▊ | 2/11 [00:07<00:34, 3.81s/it] 27%|██▋ | 3/11 [00:12<00:33, 4.17s/it] 36%|███▋ | 4/11 [00:16<00:28, 4.06s/it] 45%|████▌ | 5/11 [00:23<00:30, 5.09s/it] 55%|█████▍ | 6/11 [00:27<00:24, 4.89s/it] 64%|██████▎ | 7/11 [00:32<00:19, 4.98s/it] 73%|███████▎ | 8/11 [00:40<00:17, 5.79s/it] 82%|████████▏ | 9/11 [00:47<00:12, 6.12s/it] 91%|█████████ | 10/11 [00:51<00:05, 5.57s/it] 100%|██████████| 11/11 [00:52<00:00, 4.21s/it] 100%|██████████| 11/11 [00:52<00:00, 4.78s/it]
albertwang8192-2025-07-05-2-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:s0, folder:/tmp/tmpwiqj3ckl, device:0
albertwang8192-2025-07-05-2-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
albertwang8192-2025-07-05-2-v1-mkmlizer: quantized model in 38.105s
albertwang8192-2025-07-05-2-v1-mkmlizer: Processed model AlbertWang8192/2025-07-05_2 in 222.176s
albertwang8192-2025-07-05-2-v1-mkmlizer: creating bucket guanaco-mkml-models
albertwang8192-2025-07-05-2-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
albertwang8192-2025-07-05-2-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/albertwang8192-2025-07-05-2-v1/nvidia
albertwang8192-2025-07-05-2-v1-mkmlizer: cp /dev/shm/model_cache/config.json s3://guanaco-mkml-models/albertwang8192-2025-07-05-2-v1/nvidia/config.json
albertwang8192-2025-07-05-2-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/albertwang8192-2025-07-05-2-v1/nvidia/special_tokens_map.json
albertwang8192-2025-07-05-2-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer_config.json s3://guanaco-mkml-models/albertwang8192-2025-07-05-2-v1/nvidia/tokenizer_config.json
albertwang8192-2025-07-05-2-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/albertwang8192-2025-07-05-2-v1/nvidia/tokenizer.json
albertwang8192-2025-07-05-2-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/albertwang8192-2025-07-05-2-v1/nvidia/flywheel_model.0.safetensors
albertwang8192-2025-07-05-2-v1-mkmlizer: Loading 0: 0%| | 0/363 [00:00<?, ?it/s] Loading 0: 1%|▏ | 5/363 [00:00<00:16, 21.97it/s] Loading 0: 3%|▎ | 10/363 [00:00<00:12, 27.90it/s] Loading 0: 4%|▍ | 14/363 [00:00<00:14, 24.37it/s] Loading 0: 6%|▌ | 20/363 [00:00<00:10, 33.21it/s] Loading 0: 7%|▋ | 24/363 [00:01<00:16, 20.63it/s] Loading 0: 7%|▋ | 27/363 [00:01<00:16, 20.52it/s] Loading 0: 9%|▊ | 31/363 [00:01<00:13, 23.94it/s] Loading 0: 9%|▉ | 34/363 [00:01<00:13, 24.36it/s] Loading 0: 11%|█ | 39/363 [00:01<00:11, 27.23it/s] Loading 0: 12%|█▏ | 42/363 [00:01<00:13, 23.94it/s] Loading 0: 13%|█▎ | 48/363 [00:01<00:10, 28.95it/s] Loading 0: 14%|█▍ | 52/363 [00:02<00:11, 28.01it/s] Loading 0: 15%|█▌ | 56/363 [00:02<00:10, 28.23it/s] Loading 0: 17%|█▋ | 61/363 [00:02<00:12, 23.43it/s] Loading 0: 18%|█▊ | 64/363 [00:02<00:14, 21.01it/s] Loading 0: 20%|█▉ | 71/363 [00:02<00:10, 27.77it/s] Loading 0: 21%|██ | 75/363 [00:02<00:10, 27.52it/s] Loading 0: 21%|██▏ | 78/363 [00:03<00:11, 25.80it/s] Loading 0: 23%|██▎ | 84/363 [00:03<00:09, 30.05it/s] Loading 0: 24%|██▍ | 88/363 [00:03<00:09, 28.99it/s] Loading 0: 26%|██▌ | 93/363 [00:03<00:08, 31.05it/s] Loading 0: 27%|██▋ | 97/363 [00:03<00:09, 29.39it/s] Loading 0: 28%|██▊ | 101/363 [00:03<00:11, 22.77it/s] Loading 0: 29%|██▊ | 104/363 [00:04<00:12, 20.64it/s] Loading 0: 31%|███ | 111/363 [00:04<00:09, 27.41it/s] Loading 0: 32%|███▏ | 115/363 [00:04<00:09, 27.15it/s] Loading 0: 33%|███▎ | 120/363 [00:04<00:08, 29.65it/s] Loading 0: 34%|███▍ | 124/363 [00:04<00:08, 28.59it/s] Loading 0: 36%|███▌ | 129/363 [00:04<00:07, 30.65it/s] Loading 0: 37%|███▋ | 133/363 [00:05<00:07, 29.06it/s] Loading 0: 38%|███▊ | 137/363 [00:05<00:07, 29.19it/s] Loading 0: 39%|███▉ | 142/363 [00:05<00:09, 23.99it/s] Loading 0: 40%|███▉ | 145/363 [00:05<00:09, 22.46it/s] Loading 0: 41%|████ | 149/363 [00:05<00:09, 21.93it/s] Loading 0: 43%|████▎ | 156/363 [00:05<00:07, 28.51it/s] Loading 0: 44%|████▍ | 160/363 [00:06<00:07, 27.77it/s] Loading 0: 45%|████▌ | 165/363 [00:06<00:06, 30.16it/s] Loading 0: 47%|████▋ | 169/363 [00:06<00:06, 28.93it/s] Loading 0: 48%|████▊ | 174/363 [00:06<00:06, 31.07it/s] Loading 0: 49%|████▉ | 178/363 [00:06<00:06, 29.71it/s] Loading 0: 50%|█████ | 182/363 [00:06<00:07, 22.98it/s] Loading 0: 51%|█████ | 185/363 [00:07<00:08, 20.76it/s] Loading 0: 53%|█████▎ | 192/363 [00:07<00:06, 27.59it/s] Loading 0: 54%|█████▍ | 196/363 [00:07<00:06, 27.04it/s] Loading 0: 55%|█████▌ | 201/363 [00:07<00:05, 29.04it/s] Loading 0: 56%|█████▋ | 205/363 [00:07<00:05, 28.07it/s] Loading 0: 58%|█████▊ | 210/363 [00:07<00:05, 30.12it/s] Loading 0: 59%|█████▉ | 214/363 [00:08<00:05, 29.03it/s] Loading 0: 60%|██████ | 218/363 [00:08<00:04, 29.31it/s] Loading 0: 61%|██████▏ | 223/363 [00:08<00:05, 23.93it/s] Loading 0: 62%|██████▏ | 226/363 [00:08<00:05, 23.06it/s] Loading 0: 63%|██████▎ | 230/363 [00:08<00:06, 22.14it/s] Loading 0: 65%|██████▌ | 237/363 [00:08<00:04, 28.79it/s] Loading 0: 66%|██████▋ | 241/363 [00:09<00:04, 28.09it/s] Loading 0: 68%|██████▊ | 246/363 [00:09<00:03, 30.18it/s] Loading 0: 69%|██████▉ | 250/363 [00:09<00:03, 29.26it/s] Loading 0: 70%|███████ | 255/363 [00:09<00:03, 31.42it/s] Loading 0: 71%|███████▏ | 259/363 [00:09<00:03, 29.46it/s] Loading 0: 72%|███████▏ | 263/363 [00:09<00:04, 22.38it/s] Loading 0: 73%|███████▎ | 266/363 [00:10<00:04, 20.39it/s] Loading 0: 75%|███████▌ | 273/363 [00:10<00:03, 27.18it/s] Loading 0: 76%|███████▋ | 277/363 [00:10<00:03, 27.13it/s] Loading 0: 78%|███████▊ | 282/363 [00:10<00:02, 29.56it/s] Loading 0: 79%|███████▉ | 286/363 [00:10<00:02, 28.65it/s] Loading 0: 80%|████████ | 291/363 [00:10<00:02, 31.03it/s] Loading 0: 81%|████████▏ | 295/363 [00:11<00:02, 29.56it/s] Loading 0: 82%|████████▏ | 299/363 [00:11<00:02, 29.65it/s] Loading 0: 84%|████████▎ | 304/363 [00:11<00:02, 24.55it/s] Loading 0: 85%|████████▍ | 307/363 [00:11<00:02, 23.38it/s] Loading 0: 86%|████████▌ | 311/363 [00:11<00:02, 22.78it/s] Loading 0: 88%|████████▊ | 318/363 [00:11<00:01, 29.26it/s] Loading 0: 89%|████████▊ | 322/363 [00:12<00:01, 28.63it/s] Loading 0: 90%|█████████ | 327/363 [00:12<00:01, 30.86it/s] Loading 0: 91%|█████████ | 331/363 [00:12<00:01, 29.60it/s] Loading 0: 93%|█████████▎| 336/363 [00:12<00:00, 31.67it/s] Loading 0: 94%|█████████▎| 340/363 [00:12<00:00, 30.05it/s] Loading 0: 95%|█████████▍| 344/363 [00:13<00:01, 14.69it/s] Loading 0: 96%|█████████▌| 348/363 [00:13<00:00, 16.21it/s] Loading 0: 97%|█████████▋| 353/363 [00:13<00:00, 19.66it/s] Loading 0: 98%|█████████▊| 357/363 [00:13<00:00, 20.14it/s]
Job albertwang8192-2025-07-05-2-v1-mkmlizer completed after 248.7s with status: succeeded
Stopping job with name albertwang8192-2025-07-05-2-v1-mkmlizer
Pipeline stage MKMLizer completed in 249.19s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.16s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service albertwang8192-2025-07-05-2-v1
Waiting for inference service albertwang8192-2025-07-05-2-v1 to be ready
Inference service albertwang8192-2025-07-05-2-v1 ready after 220.89072132110596s
Pipeline stage MKMLDeployer completed in 221.61s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.48508620262146s
Received healthy response to inference request in 1.9725525379180908s
Received healthy response to inference request in 1.8713903427124023s
Received healthy response to inference request in 1.8920478820800781s
Received healthy response to inference request in 1.5874276161193848s
5 requests
0 failed requests
5th percentile: 1.6442201614379883
10th percentile: 1.7010127067565919
20th percentile: 1.8145977973937988
30th percentile: 1.8755218505859375
40th percentile: 1.883784866333008
50th percentile: 1.8920478820800781
60th percentile: 1.9242497444152833
70th percentile: 1.9564516067504882
80th percentile: 2.0750592708587647
90th percentile: 2.280072736740112
95th percentile: 2.382579469680786
99th percentile: 2.464584856033325
mean time: 1.9617009162902832
Pipeline stage StressChecker completed in 11.39s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 0.69s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 0.64s
Shutdown handler de-registered
albertwang8192-2025-07-05-2_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyScorer
Evaluating %s Family Friendly Score with %s threads
Pipeline stage OfflineFamilyFriendlyScorer completed in 3061.83s
Shutdown handler de-registered
albertwang8192-2025-07-05-2_v1 status is now inactive due to auto deactivation removed underperforming models
albertwang8192-2025-07-05-2_v1 status is now torndown due to DeploymentManager action