Shutdown handler not registered because Python interpreter is not running in the main thread
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLizer
Starting job with name alexdaoud-trainer-bagir-8537-v1-mkmlizer
Waiting for job on alexdaoud-trainer-bagir-8537-v1-mkmlizer to finish
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ╔═════════════════════════════════════════════════════════════════════╗
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ _____ __ __ ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ / _/ /_ ___ __/ / ___ ___ / / ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ / _/ / // / |/|/ / _ \/ -_) -_) / ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ /_//_/\_, /|__,__/_//_/\__/\__/_/ ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ /___/ ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ Version: 0.11.12 ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ Copyright 2023 MK ONE TECHNOLOGIES Inc. ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ https://mk1.ai ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ The license key for the current software has been verified as ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ belonging to: ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ Chai Research Corp. ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ Account ID: 7997a29f-0ceb-4cc7-9adf-840c57b4ae6f ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ Expiration: 2025-01-15 23:59:59 ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ║ ║
alexdaoud-trainer-bagir-8537-v1-mkmlizer: ╚═════════════════════════════════════════════════════════════════════╝
alexdaoud-trainer-bagir-8537-v1-mkmlizer: Downloaded to shared memory in 33.027s
alexdaoud-trainer-bagir-8537-v1-mkmlizer: quantizing model to /dev/shm/model_cache, profile:t0, folder:/tmp/tmpgh1j_7t0, device:0
alexdaoud-trainer-bagir-8537-v1-mkmlizer: Saving flywheel model at /dev/shm/model_cache
Connection pool is full, discarding connection: %s. Connection pool size: %s
Connection pool is full, discarding connection: %s. Connection pool size: %s
alexdaoud-trainer-bagir-8537-v1-mkmlizer: quantized model in 86.236s
alexdaoud-trainer-bagir-8537-v1-mkmlizer: Processed model alexdaoud/trainer_bagir_2024-12-11-checkpoint-71 in 119.263s
alexdaoud-trainer-bagir-8537-v1-mkmlizer: creating bucket guanaco-mkml-models
alexdaoud-trainer-bagir-8537-v1-mkmlizer: Bucket 's3://guanaco-mkml-models/' created
alexdaoud-trainer-bagir-8537-v1-mkmlizer: uploading /dev/shm/model_cache to s3://guanaco-mkml-models/alexdaoud-trainer-bagir-8537-v1
alexdaoud-trainer-bagir-8537-v1-mkmlizer: cp /dev/shm/model_cache/special_tokens_map.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-8537-v1/special_tokens_map.json
alexdaoud-trainer-bagir-8537-v1-mkmlizer: cp /dev/shm/model_cache/tokenizer.json s3://guanaco-mkml-models/alexdaoud-trainer-bagir-8537-v1/tokenizer.json
alexdaoud-trainer-bagir-8537-v1-mkmlizer: cp /dev/shm/model_cache/flywheel_model.0.safetensors s3://guanaco-mkml-models/alexdaoud-trainer-bagir-8537-v1/flywheel_model.0.safetensors
alexdaoud-trainer-bagir-8537-v1-mkmlizer:
Loading 0: 0%| | 0/291 [00:00<?, ?it/s]
Loading 0: 1%| | 3/291 [00:00<00:56, 5.07it/s]
Loading 0: 1%|▏ | 4/291 [00:01<01:33, 3.06it/s]
Loading 0: 2%|▏ | 5/291 [00:01<02:05, 2.27it/s]
Loading 0: 3%|▎ | 8/291 [00:02<01:04, 4.37it/s]
Loading 0: 3%|▎ | 9/291 [00:02<01:03, 4.45it/s]
Loading 0: 3%|▎ | 10/291 [00:02<00:55, 5.08it/s]
Loading 0: 4%|▍ | 12/291 [00:02<01:05, 4.26it/s]
Loading 0: 4%|▍ | 13/291 [00:03<01:26, 3.20it/s]
Loading 0: 5%|▍ | 14/291 [00:04<01:49, 2.54it/s]
Loading 0: 6%|▌ | 17/291 [00:04<01:02, 4.36it/s]
Loading 0: 6%|▌ | 18/291 [00:04<00:59, 4.59it/s]
Loading 0: 7%|▋ | 19/291 [00:04<00:52, 5.17it/s]
Loading 0: 7%|▋ | 21/291 [00:05<01:02, 4.31it/s]
Loading 0: 8%|▊ | 22/291 [00:05<01:22, 3.25it/s]
Loading 0: 8%|▊ | 23/291 [00:06<01:45, 2.54it/s]
Loading 0: 9%|▉ | 26/291 [00:06<01:01, 4.31it/s]
Loading 0: 9%|▉ | 27/291 [00:06<00:58, 4.55it/s]
Loading 0: 10%|▉ | 28/291 [00:07<00:51, 5.07it/s]
Loading 0: 10%|█ | 30/291 [00:07<01:01, 4.28it/s]
Loading 0: 11%|█ | 31/291 [00:08<01:20, 3.24it/s]
Loading 0: 11%|█ | 32/291 [00:08<01:40, 2.57it/s]
Loading 0: 12%|█▏ | 35/291 [00:09<00:58, 4.37it/s]
Loading 0: 12%|█▏ | 36/291 [00:09<00:55, 4.61it/s]
Loading 0: 13%|█▎ | 37/291 [00:09<00:48, 5.20it/s]
Loading 0: 13%|█▎ | 39/291 [00:09<00:58, 4.33it/s]
Loading 0: 14%|█▎ | 40/291 [00:10<01:17, 3.25it/s]
Loading 0: 14%|█▍ | 41/291 [00:11<01:39, 2.52it/s]
Loading 0: 15%|█▌ | 44/291 [00:11<00:57, 4.31it/s]
Loading 0: 15%|█▌ | 45/291 [00:11<00:54, 4.54it/s]
Loading 0: 16%|█▌ | 46/291 [00:11<00:48, 5.10it/s]
Loading 0: 16%|█▋ | 48/291 [00:12<00:56, 4.29it/s]
Loading 0: 17%|█▋ | 49/291 [00:12<01:14, 3.26it/s]
Loading 0: 17%|█▋ | 50/291 [00:13<01:34, 2.56it/s]
Loading 0: 18%|█▊ | 53/291 [00:13<00:54, 4.35it/s]
Loading 0: 19%|█▊ | 54/291 [00:13<00:51, 4.58it/s]
Loading 0: 19%|█▉ | 55/291 [00:14<00:45, 5.18it/s]
Loading 0: 20%|█▉ | 57/291 [00:14<00:54, 4.33it/s]
Loading 0: 20%|█▉ | 58/291 [00:15<01:11, 3.27it/s]
Loading 0: 20%|██ | 59/291 [00:15<01:30, 2.56it/s]
Loading 0: 21%|██▏ | 62/291 [00:16<00:52, 4.34it/s]
Loading 0: 22%|██▏ | 63/291 [00:16<00:49, 4.57it/s]
Loading 0: 22%|██▏ | 64/291 [00:16<00:43, 5.17it/s]
Loading 0: 23%|██▎ | 66/291 [00:16<00:51, 4.33it/s]
Loading 0: 23%|██▎ | 67/291 [00:17<01:08, 3.25it/s]
Loading 0: 23%|██▎ | 68/291 [00:18<01:26, 2.57it/s]
Loading 0: 24%|██▍ | 71/291 [00:18<00:49, 4.41it/s]
Loading 0: 25%|██▍ | 72/291 [00:18<00:47, 4.64it/s]
Loading 0: 25%|██▌ | 73/291 [00:18<00:41, 5.23it/s]
Loading 0: 26%|██▌ | 75/291 [00:19<00:49, 4.36it/s]
Loading 0: 26%|██▌ | 76/291 [00:19<01:05, 3.27it/s]
Loading 0: 26%|██▋ | 77/291 [00:20<01:23, 2.56it/s]
Loading 0: 27%|██▋ | 80/291 [00:20<00:48, 4.39it/s]
Loading 0: 28%|██▊ | 81/291 [00:20<00:45, 4.62it/s]
Loading 0: 28%|██▊ | 82/291 [00:20<00:40, 5.21it/s]
Loading 0: 29%|██▊ | 83/291 [00:21<00:39, 5.22it/s]
Loading 0: 29%|██▉ | 84/291 [00:21<01:00, 3.44it/s]
Loading 0: 29%|██▉ | 85/291 [00:22<01:16, 2.71it/s]
Loading 0: 30%|██▉ | 86/291 [00:22<01:32, 2.23it/s]
Loading 0: 31%|███ | 89/291 [00:23<00:48, 4.15it/s]
Loading 0: 31%|███ | 90/291 [00:23<00:45, 4.42it/s]
Loading 0: 31%|███▏ | 91/291 [00:23<00:39, 5.03it/s]
Loading 0: 32%|███▏ | 93/291 [00:23<00:46, 4.26it/s]
Loading 0: 32%|███▏ | 94/291 [00:24<01:01, 3.21it/s]
Loading 0: 33%|███▎ | 95/291 [00:25<01:16, 2.55it/s]
Loading 0: 34%|███▎ | 98/291 [00:25<00:44, 4.34it/s]
Loading 0: 34%|███▍ | 99/291 [00:25<00:41, 4.57it/s]
Loading 0: 34%|███▍ | 100/291 [00:25<00:37, 5.10it/s]
Loading 0: 35%|███▌ | 102/291 [00:26<00:43, 4.31it/s]
Loading 0: 35%|███▌ | 103/291 [00:26<00:57, 3.25it/s]
Loading 0: 36%|███▌ | 104/291 [00:27<01:12, 2.58it/s]
Loading 0: 37%|███▋ | 107/291 [00:27<00:41, 4.45it/s]
Loading 0: 37%|███▋ | 108/291 [00:27<00:39, 4.69it/s]
Loading 0: 37%|███▋ | 109/291 [00:28<00:34, 5.28it/s]
Loading 0: 38%|███▊ | 111/291 [00:28<00:41, 4.38it/s]
Loading 0: 38%|███▊ | 112/291 [00:29<00:54, 3.30it/s]
Loading 0: 39%|███▉ | 113/291 [00:29<01:08, 2.60it/s]
Loading 0: 40%|███▉ | 116/291 [00:30<00:39, 4.47it/s]
Loading 0: 40%|████ | 117/291 [00:30<00:37, 4.70it/s]
Loading 0: 41%|████ | 118/291 [00:30<00:32, 5.28it/s]
Loading 0: 41%|████ | 120/291 [00:30<00:38, 4.39it/s]
Loading 0: 42%|████▏ | 121/291 [00:31<00:51, 3.30it/s]
Loading 0: 42%|████▏ | 122/291 [00:32<01:05, 2.58it/s]
Loading 0: 43%|████▎ | 125/291 [00:32<00:37, 4.38it/s]
Loading 0: 43%|████▎ | 126/291 [00:32<00:35, 4.62it/s]
Loading 0: 44%|████▎ | 127/291 [00:32<00:31, 5.20it/s]
Loading 0: 44%|████▍ | 129/291 [00:33<00:37, 4.36it/s]
Loading 0: 45%|████▍ | 130/291 [00:33<00:48, 3.30it/s]
Loading 0: 45%|████▌ | 131/291 [00:34<01:01, 2.61it/s]
Loading 0: 46%|████▌ | 134/291 [00:34<00:35, 4.48it/s]
Loading 0: 46%|████▋ | 135/291 [00:34<00:33, 4.72it/s]
Loading 0: 47%|████▋ | 136/291 [00:34<00:29, 5.32it/s]
Loading 0: 47%|████▋ | 138/291 [00:35<00:34, 4.41it/s]
Loading 0: 48%|████▊ | 139/291 [00:35<00:45, 3.31it/s]
Loading 0: 48%|████▊ | 140/291 [00:36<00:58, 2.58it/s]
Loading 0: 49%|████▉ | 143/291 [00:36<00:33, 4.43it/s]
Loading 0: 49%|████▉ | 144/291 [00:37<00:31, 4.67it/s]
Loading 0: 50%|████▉ | 145/291 [00:37<00:27, 5.25it/s]
Loading 0: 51%|█████ | 147/291 [00:37<00:32, 4.40it/s]
Loading 0: 51%|█████ | 148/291 [00:38<00:43, 3.31it/s]
Loading 0: 51%|█████ | 149/291 [00:38<00:54, 2.61it/s]
Loading 0: 52%|█████▏ | 152/291 [00:39<00:30, 4.49it/s]
Loading 0: 53%|█████▎ | 153/291 [00:39<00:29, 4.73it/s]
Loading 0: 53%|█████▎ | 154/291 [00:39<00:26, 5.24it/s]
Loading 0: 54%|█████▎ | 156/291 [00:39<00:30, 4.38it/s]
Loading 0: 54%|█████▍ | 157/291 [00:40<00:41, 3.26it/s]
Loading 0: 54%|█████▍ | 158/291 [00:41<00:51, 2.58it/s]
Loading 0: 55%|█████▌ | 161/291 [00:41<00:29, 4.44it/s]
Loading 0: 56%|█████▌ | 162/291 [00:41<00:27, 4.68it/s]
Loading 0: 56%|█████▌ | 163/291 [00:41<00:24, 5.25it/s]
Loading 0: 57%|█████▋ | 165/291 [00:42<00:28, 4.36it/s]
Loading 0: 57%|█████▋ | 166/291 [00:42<00:37, 3.30it/s]
Loading 0: 57%|█████▋ | 167/291 [00:43<00:48, 2.55it/s]
Loading 0: 58%|█████▊ | 170/291 [00:43<00:28, 4.32it/s]
Loading 0: 59%|█████▉ | 171/291 [00:43<00:26, 4.57it/s]
Loading 0: 59%|█████▉ | 172/291 [00:44<00:23, 5.08it/s]
Loading 0: 59%|█████▉ | 173/291 [00:44<00:33, 3.49it/s]
Loading 0: 60%|██████ | 175/291 [00:44<00:24, 4.79it/s]
Loading 0: 60%|██████ | 176/291 [00:44<00:22, 5.03it/s]
Loading 0: 61%|██████ | 177/291 [00:45<00:20, 5.69it/s]
Loading 0: 62%|██████▏ | 179/291 [00:45<00:24, 4.50it/s]
Loading 0: 62%|██████▏ | 180/291 [00:46<00:33, 3.31it/s]
Loading 0: 62%|██████▏ | 181/291 [00:46<00:42, 2.60it/s]
Loading 0: 63%|██████▎ | 184/291 [00:47<00:23, 4.54it/s]
Loading 0: 64%|██████▎ | 185/291 [00:47<00:22, 4.78it/s]
Loading 0: 64%|██████▍ | 186/291 [00:47<00:19, 5.37it/s]
Loading 0: 64%|██████▍ | 187/291 [00:47<00:19, 5.45it/s]
Loading 0: 65%|██████▍ | 188/291 [00:48<00:29, 3.55it/s]
Loading 0: 65%|██████▍ | 189/291 [00:48<00:38, 2.64it/s]
Loading 0: 66%|██████▌ | 192/291 [00:49<00:27, 3.59it/s]
Loading 0: 66%|██████▋ | 193/291 [00:49<00:33, 2.95it/s]
Loading 0: 67%|██████▋ | 194/291 [00:50<00:39, 2.46it/s]
Loading 0: 68%|██████▊ | 197/291 [00:50<00:22, 4.16it/s]
Loading 0: 68%|██████▊ | 198/291 [00:50<00:21, 4.42it/s]
Loading 0: 68%|██████▊ | 199/291 [00:50<00:18, 4.99it/s]
Loading 0: 69%|██████▉ | 201/291 [00:51<00:21, 4.28it/s]
Loading 0: 69%|██████▉ | 202/291 [00:52<00:27, 3.27it/s]
Loading 0: 70%|██████▉ | 203/291 [00:52<00:33, 2.60it/s]
Loading 0: 71%|███████ | 206/291 [00:52<00:19, 4.40it/s]
Loading 0: 71%|███████ | 207/291 [00:53<00:18, 4.64it/s]
Loading 0: 71%|███████▏ | 208/291 [00:53<00:16, 5.16it/s]
Loading 0: 72%|███████▏ | 210/291 [00:53<00:18, 4.28it/s]
Loading 0: 73%|███████▎ | 211/291 [00:54<00:24, 3.26it/s]
Loading 0: 73%|███████▎ | 212/291 [00:55<00:30, 2.60it/s]
Loading 0: 74%|███████▍ | 215/291 [00:55<00:17, 4.47it/s]
Loading 0: 74%|███████▍ | 216/291 [00:55<00:15, 4.71it/s]
Loading 0: 75%|███████▍ | 217/291 [00:55<00:14, 5.28it/s]
Loading 0: 75%|███████▌ | 219/291 [00:56<00:16, 4.39it/s]
Loading 0: 76%|███████▌ | 220/291 [00:56<00:21, 3.32it/s]
Loading 0: 76%|███████▌ | 221/291 [00:57<00:26, 2.62it/s]
Loading 0: 77%|███████▋ | 224/291 [00:57<00:14, 4.49it/s]
Loading 0: 77%|███████▋ | 225/291 [00:57<00:13, 4.72it/s]
Loading 0: 78%|███████▊ | 226/291 [00:57<00:12, 5.31it/s]
Loading 0: 78%|███████▊ | 228/291 [00:58<00:14, 4.42it/s]
Loading 0: 79%|███████▊ | 229/291 [00:58<00:18, 3.34it/s]
Loading 0: 79%|███████▉ | 230/291 [00:59<00:23, 2.64it/s]
Loading 0: 80%|████████ | 233/291 [00:59<00:12, 4.54it/s]
Loading 0: 80%|████████ | 234/291 [00:59<00:11, 4.77it/s]
Loading 0: 81%|████████ | 235/291 [01:00<00:10, 5.33it/s]
Loading 0: 81%|████████▏ | 237/291 [01:00<00:12, 4.43it/s]
Loading 0: 82%|████████▏ | 238/291 [01:01<00:15, 3.34it/s]
Loading 0: 82%|████████▏ | 239/291 [01:01<00:19, 2.64it/s]
Loading 0: 83%|████████▎ | 242/291 [01:01<00:10, 4.49it/s]
Loading 0: 84%|████████▎ | 243/291 [01:02<00:10, 4.73it/s]
Loading 0: 84%|████████▍ | 244/291 [01:02<00:08, 5.30it/s]
Loading 0: 85%|████████▍ | 246/291 [01:02<00:10, 4.41it/s]
Loading 0: 85%|████████▍ | 247/291 [01:03<00:13, 3.29it/s]
Loading 0: 85%|████████▌ | 248/291 [01:04<00:16, 2.60it/s]
Loading 0: 86%|████████▋ | 251/291 [01:04<00:09, 4.42it/s]
Loading 0: 87%|████████▋ | 252/291 [01:04<00:08, 4.66it/s]
Loading 0: 87%|████████▋ | 253/291 [01:04<00:07, 5.23it/s]
Loading 0: 88%|████████▊ | 255/291 [01:05<00:08, 4.35it/s]
Loading 0: 88%|████████▊ | 256/291 [01:05<00:10, 3.29it/s]
Loading 0: 88%|████████▊ | 257/291 [01:06<00:13, 2.61it/s]
Loading 0: 89%|████████▉ | 260/291 [01:06<00:06, 4.48it/s]
Loading 0: 90%|████████▉ | 261/291 [01:06<00:06, 4.71it/s]
Loading 0: 90%|█████████ | 262/291 [01:06<00:05, 5.29it/s]
Loading 0: 91%|█████████ | 264/291 [01:07<00:06, 4.41it/s]
Loading 0: 91%|█████████ | 265/291 [01:07<00:07, 3.32it/s]
Loading 0: 91%|█████████▏| 266/291 [01:08<00:09, 2.61it/s]
Loading 0: 92%|█████████▏| 269/291 [01:08<00:04, 4.43it/s]
Loading 0: 93%|█████████▎| 270/291 [01:08<00:04, 4.68it/s]
Loading 0: 93%|█████████▎| 271/291 [01:09<00:03, 5.23it/s]
Loading 0: 94%|█████████▍| 273/291 [01:09<00:04, 4.37it/s]
Loading 0: 94%|█████████▍| 274/291 [01:10<00:05, 3.32it/s]
Loading 0: 95%|█████████▍| 275/291 [01:10<00:06, 2.62it/s]
Loading 0: 96%|█████████▌| 278/291 [01:11<00:02, 4.51it/s]
Loading 0: 96%|█████████▌| 279/291 [01:11<00:02, 4.74it/s]
Loading 0: 96%|█████████▌| 280/291 [01:11<00:02, 5.24it/s]
Loading 0: 97%|█████████▋| 281/291 [01:11<00:02, 3.55it/s]
Loading 0: 97%|█████████▋| 282/291 [01:12<00:03, 2.69it/s]
Loading 0: 98%|█████████▊| 284/291 [01:12<00:01, 3.85it/s]
Loading 0: 98%|█████████▊| 285/291 [01:12<00:01, 4.20it/s]
Loading 0: 98%|█████████▊| 286/291 [01:13<00:01, 4.81it/s]
Loading 0: 99%|█████████▊| 287/291 [01:13<00:00, 4.82it/s]
Loading 0: 99%|█████████▉| 288/291 [01:13<00:00, 3.23it/s]
Job alexdaoud-trainer-bagir-8537-v1-mkmlizer completed after 138.33s with status: succeeded
Stopping job with name alexdaoud-trainer-bagir-8537-v1-mkmlizer
Pipeline stage MKMLizer completed in 138.83s
run pipeline stage %s
Running pipeline stage MKMLTemplater
Pipeline stage MKMLTemplater completed in 0.17s
run pipeline stage %s
Running pipeline stage MKMLDeployer
Creating inference service alexdaoud-trainer-bagir-8537-v1
Waiting for inference service alexdaoud-trainer-bagir-8537-v1 to be ready
Connection pool is full, discarding connection: %s. Connection pool size: %s
Inference service alexdaoud-trainer-bagir-8537-v1 ready after 221.11183285713196s
Pipeline stage MKMLDeployer completed in 221.74s
run pipeline stage %s
Running pipeline stage StressChecker
Received healthy response to inference request in 2.9084842205047607s
Received healthy response to inference request in 5.045945405960083s
Received healthy response to inference request in 4.423158168792725s
Received healthy response to inference request in 4.644307851791382s
Received healthy response to inference request in 3.601797342300415s
5 requests
0 failed requests
5th percentile: 3.0471468448638914
10th percentile: 3.1858094692230225
20th percentile: 3.4631347179412844
30th percentile: 3.766069507598877
40th percentile: 4.094613838195801
50th percentile: 4.423158168792725
60th percentile: 4.511618041992188
70th percentile: 4.60007791519165
80th percentile: 4.724635362625122
90th percentile: 4.8852903842926025
95th percentile: 4.965617895126343
99th percentile: 5.029879903793335
mean time: 4.124738597869873
%s, retrying in %s seconds...
Received healthy response to inference request in 2.481973886489868s
Received healthy response to inference request in 4.9302613735198975s
Received healthy response to inference request in 2.6908605098724365s
Received healthy response to inference request in 3.160857677459717s
Received healthy response to inference request in 2.132401466369629s
5 requests
0 failed requests
5th percentile: 2.2023159503936767
10th percentile: 2.2722304344177244
20th percentile: 2.4120594024658204
30th percentile: 2.523751211166382
40th percentile: 2.6073058605194093
50th percentile: 2.6908605098724365
60th percentile: 2.8788593769073487
70th percentile: 3.0668582439422605
80th percentile: 3.5147384166717535
90th percentile: 4.222499895095825
95th percentile: 4.576380634307861
99th percentile: 4.85948522567749
mean time: 3.0792709827423095
Pipeline stage StressChecker completed in 38.98s
run pipeline stage %s
Running pipeline stage OfflineFamilyFriendlyTriggerPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage OfflineFamilyFriendlyTriggerPipeline completed in 2.28s
run pipeline stage %s
Running pipeline stage TriggerMKMLProfilingPipeline
run_pipeline:run_in_cloud %s
starting trigger_guanaco_pipeline args=%s
triggered trigger_guanaco_pipeline args=%s
Pipeline stage TriggerMKMLProfilingPipeline completed in 2.09s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_8537_v1 status is now deployed due to DeploymentManager action
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Skipping teardown as no inference service was successfully deployed
Pipeline stage MKMLProfilerDeleter completed in 0.14s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.11s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-8537-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-8537-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-8537-v1-profiler ready after 220.49790263175964s
Pipeline stage MKMLProfilerDeployer completed in 220.87s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplo5pdlg:/code/chaiverse_profiler_1734390488 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplo5pdlg --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734390488 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734390488/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplo5pdlg:/code/chaiverse_profiler_1734393286 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplo5pdlg --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734393286 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734393286/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-8537-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-8537-v1-profiler
Service alexdaoud-trainer-bagir-8537-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.42s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-8537-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.73s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.13s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-8537-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-8537-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-8537-v1-profiler ready after 230.52497005462646s
Pipeline stage MKMLProfilerDeployer completed in 230.90s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplotnl7r:/code/chaiverse_profiler_1734394125 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplotnl7r --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734394125 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734394125/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplotnl7r:/code/chaiverse_profiler_1734396923 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplotnl7r:/code/chaiverse_profiler_1734396924 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplotnl7r --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734396924 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734396924/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-8537-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-8537-v1-profiler
Service alexdaoud-trainer-bagir-8537-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.24s
Shutdown handler de-registered
Shutdown handler registered
run pipeline %s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-8537-v1-profiler is running
Skipping teardown as no inference service was found
Pipeline stage MKMLProfilerDeleter completed in 2.47s
run pipeline stage %s
Running pipeline stage MKMLProfilerTemplater
Pipeline stage MKMLProfilerTemplater completed in 0.15s
run pipeline stage %s
Running pipeline stage MKMLProfilerDeployer
Creating inference service alexdaoud-trainer-bagir-8537-v1-profiler
Waiting for inference service alexdaoud-trainer-bagir-8537-v1-profiler to be ready
Inference service alexdaoud-trainer-bagir-8537-v1-profiler ready after 30.158751487731934s
Pipeline stage MKMLProfilerDeployer completed in 30.47s
run pipeline stage %s
Running pipeline stage MKMLProfilerRunner
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplotnl7r:/code/chaiverse_profiler_1734397558 --namespace tenant-chaiml-guanaco
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplownrm6:/code/chaiverse_profiler_1734397560 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplownrm6 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734397560 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734397560/summary.json'
%s, retrying in %s seconds...
kubectl cp /code/guanaco/guanaco_inference_services/src/inference_scripts tenant-chaiml-guanaco/alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplownrm6:/code/chaiverse_profiler_1734400335 --namespace tenant-chaiml-guanaco
kubectl exec -it alexdaoud-trainer-ba699c22da6c96f05e86dc0198f3c37dca-deplownrm6 --namespace tenant-chaiml-guanaco -- sh -c 'cd /code/chaiverse_profiler_1734400335 && python profiles.py profile --best_of_n 1 --auto_batch 5 --batches 1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,155,160,165,170,175,180,185,190,195 --samples 200 --input_tokens 256 --output_tokens 1 --summary /code/chaiverse_profiler_1734400335/summary.json'
Received signal 2, running shutdown handler
run pipeline stage %s
Running pipeline stage MKMLProfilerDeleter
Checking if service alexdaoud-trainer-bagir-8537-v1-profiler is running
Tearing down inference service alexdaoud-trainer-bagir-8537-v1-profiler
Service alexdaoud-trainer-bagir-8537-v1-profiler has been torndown
Pipeline stage MKMLProfilerDeleter completed in 2.52s
Shutdown handler de-registered
alexdaoud-trainer-bagir-_8537_v1 status is now inactive due to auto deactivation removed underperforming models